The evolution of the recrystallization phase in amorphous 6H-SiC formed by He implantation followed by thermal annealing is investigated. Microstructures of recrystallized layers in 15 keV He ${}^{+}$ ion implanted 6H-SiC (0001) wafers are characterized by means of cross-sectional transmission electron microscopy (XTEM) and high-resolution TEM. Epitaxial recrystallization of buried amorphous layers is observed at an annealing temperature of 900°C. The recrystallization region contains a 3C-SiC structure and a 6H-SiC structure with different crystalline orientations. A high density of lattice defects is observed at the interface of different phases and in the periphery of He bubbles. With increasing annealing to 1000°C, 3C-SiC and columnar epitaxial growth 6H-SiC become unstable, instead of [0001] orientated 6H-SiC. In addition, the density of lattice defects increases slightly with increasing annealing. The possible mechanisms for explanation are also discussed.
Source:IOPscience
If you need more information about SiC 6H, please visit our website: www.qualitymaterial.net, and send us email at send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com.